library(attrib)
#> attrib 2021.1.2 https://folkehelseinstituttet.github.io/attrib
library(data.table)
attrib
provides a way of estimating what the mortality
would have been if some given exposures are set to a reference value. By
using simulations from the posterior distribution of all coefficients we
can easily aggregate over time and locations while still estimating
valid credible intervals.
This vignette will go through:
fit_attrib
to fit the model to the dataest_attrib
to estimate the mortality under
different scenarios (i.e. when the exposures are at reference values and
at observed values)We will use the datasets fake_data_county
and
fake_data_nation
.
fake_data_county
consists of fake mortality data for all
counties of Norway on a weekly basis from 2010 until 2020. The dataset
consists of the following features:
fake_data_nation
is a similar dataset at the national
level.
data_fake_county <- attrib::data_fake_county
data_fake_nation <- attrib::data_fake_nation
head(data_fake_county, 5)
#> Key: <location_code, week>
#> location_code week season year yrwk x pop pr100_ili
#> <char> <num> <char> <num> <char> <num> <num> <num>
#> 1: county03 1 2009/2010 2010 2010-01 24 693494 0.5302766
#> 2: county03 1 2010/2011 2011 2011-01 24 693494 0.7234059
#> 3: county03 1 2011/2012 2012 2012-01 24 693494 1.7817489
#> 4: county03 1 2012/2013 2013 2013-01 24 693494 1.6000083
#> 5: county03 1 2013/2014 2014 2014-01 24 693494 1.6037883
#> pr100_ili_lag_1 temperature temperature_high deaths
#> <num> <num> <num> <int>
#> 1: 0.4496182 -0.94325234 0 103
#> 2: 0.5359123 0.01462311 0 96
#> 3: 1.8919261 -2.03893188 0 105
#> 4: 1.3909804 -6.02035548 0 97
#> 5: 1.3942666 -1.72146124 0 114
In this example we will look at the exposures
pr100_ili_lag_1
and temperature_high
and
calculate the attributable mortality due to these exposures.
We want to estimate the attributable mortality due to ILI and
heatwaves. attrib
lets us fit models with both fixed and
random effect and offsets using linear mixed models (LMM).
We use the glmer
function from the lme4
package. In practice, this means we must specify the response, offsets,
the fixed effects, and the random effects. In our case we will model the
response deaths as a function of:
#response
response <- "deaths"
# fixed effects
fixef_county <- " temperature_high +
pr100_ili_lag_1 +
sin(2 * pi * (week - 1) / 52) +
cos(2 * pi * (week - 1) / 52)"
#random effects
ranef_county <- "(1|location_code) +
(pr100_ili_lag_1|season)"
#offset
offset_county <- "log(pop)"
Now we fit the model using fit_attrib
.
fit_county <- fit_attrib(data_fake_county,
response = response,
fixef = fixef_county,
ranef = ranef_county,
offset = offset_county)
This results in the following fit:
fit_county
#> Generalized linear mixed model fit by maximum likelihood (Laplace
#> Approximation) [glmerMod]
#> Family: poisson ( log )
#> Formula: deaths ~ temperature_high + pr100_ili_lag_1 + sin(2 * pi * (week -
#> 1)/52) + cos(2 * pi * (week - 1)/52) + offset(log(pop)) +
#> (1 | location_code) + (pr100_ili_lag_1 | season)
#> Data: data
#> AIC BIC logLik deviance df.resid
#> 44645.63 44706.39 -22313.82 44627.63 6305
#> Random effects:
#> Groups Name Std.Dev. Corr
#> location_code (Intercept) 0.000000
#> season (Intercept) 0.000000
#> pr100_ili_lag_1 0.004719 NaN
#> Number of obs: 6314, groups: location_code, 11; season, 11
#> Fixed Effects:
#> (Intercept) temperature_high
#> -8.79616 0.08188
#> pr100_ili_lag_1 sin(2 * pi * (week - 1)/52)
#> 0.02796 0.01878
#> cos(2 * pi * (week - 1)/52)
#> 0.07498
#> optimizer (Nelder_Mead) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
Note that fit has the added attributes offset
(saving
the offset name) and fit_fix
(the coefficients of the
linear model fitted on only the fixed effects). These are needed by
est_attrib
to create the dataset containing only the fixed
effects.
We estimate the same as before But on a national level, meaning we remove the random effect (1|location_code) since we only have one location code. This gives the following features:
The sim
function can be used to generate simulations for
all the rows in our data.
It first generates n_sim
simulations from the posterior
distribution of the coefficients from out fit before applying these
coefficients on our dataset generating n_sim
simulations
and expected mortality for each line. This is quite generic. Hence if
the goal is to compute attributable mortality or incident risk ratios we
use est_attrib
as shown in a later part of the
vignette.
n_sim <- 20
sim_data <- sim(fit_nation, data_fake_nation, n_sim)
head(sim_data[id_row == 1], 5)
#> week season year yrwk x location_code pop pr100_ili
#> <num> <char> <num> <char> <num> <char> <num> <num>
#> 1: 1 2009/2010 2010 2010-01 24 norge 5367580 1.160403
#> 2: 1 2009/2010 2010 2010-01 24 norge 5367580 1.160403
#> 3: 1 2009/2010 2010 2010-01 24 norge 5367580 1.160403
#> 4: 1 2009/2010 2010 2010-01 24 norge 5367580 1.160403
#> 5: 1 2009/2010 2010 2010-01 24 norge 5367580 1.160403
#> pr100_ili_lag_1 temperature_high deaths id_row sim_id sim_value
#> <num> <num> <int> <int> <num> <num>
#> 1: 1.100072 0 891 1 1 909.6926
#> 2: 1.100072 0 891 1 2 903.3580
#> 3: 1.100072 0 891 1 3 903.3936
#> 4: 1.100072 0 891 1 4 902.2375
#> 5: 1.100072 0 891 1 5 903.2882
We can see that we now have multiple expected mortalities for the same dataline. This is due to the coefficient simulations.
To estimate attributable mortality we simulate:
This is easily done using est_attrib
.
We need to give the fit, the dataset, the exposures with reference
values, and the number of simulations. est_attrib
will then
using the arm::sim
function to generate simulations of the
underlying posterior distribution. attrib::sim
will then
combine the simulated coefficients to estimate the modeled outcome
(i.e. number of deaths) for each simulation.
exposures <- list( "temperature_high" = 0, "pr100_ili_lag_1" = 0)
n_sim <- 20
est_attrib_sim_county <- attrib::est_attrib(fit_county,
data_fake_county,
exposures = exposures,
n_sim = n_sim)
est_attrib_sim_nation <- attrib::est_attrib(fit_nation,
data_fake_nation,
exposures = exposures,
n_sim = n_sim)
head(est_attrib_sim_county, 5)
#> location_code week season year yrwk x pop pr100_ili
#> <char> <num> <char> <num> <char> <num> <num> <num>
#> 1: county03 1 2009/2010 2010 2010-01 24 693494 0.5302766
#> 2: county03 1 2010/2011 2011 2011-01 24 693494 0.7234059
#> 3: county03 1 2011/2012 2012 2012-01 24 693494 1.7817489
#> 4: county03 1 2012/2013 2013 2013-01 24 693494 1.6000083
#> 5: county03 1 2013/2014 2014 2014-01 24 693494 1.6037883
#> pr100_ili_lag_1 temperature temperature_high deaths id sim_id
#> <num> <num> <num> <int> <int> <num>
#> 1: 0.4496182 -0.94325234 0 103 1 1
#> 2: 0.5359123 0.01462311 0 96 2 1
#> 3: 1.8919261 -2.03893188 0 105 3 1
#> 4: 1.3909804 -6.02035548 0 97 4 1
#> 5: 1.3942666 -1.72146124 0 114 5 1
#> sim_value_exposures=observed sim_value_temperature_high=0
#> <num> <num>
#> 1: 114.2108 114.2108
#> 2: 114.2906 114.2906
#> 3: 117.8818 117.8818
#> 4: 117.3912 117.3912
#> 5: 117.1597 117.1597
#> sim_value_pr100_ili_lag_1=0
#> <num>
#> 1: 112.8706
#> 2: 112.9797
#> 3: 113.4313
#> 4: 113.8555
#> 5: 114.2707
We can see in the above dataset that the columns id, sim_id, sim_value_exposures=observed, sim_value_temperature_high=0, sim_value_pr100_ili_lag_1=0 are added to the previous set of columns. For each row in the original dataset we now have 20 rows, one for each of the simulations done by est_attrib. In each row we see the estimate of the number of deaths given a reference value for sim_value_temperature_high and sim_value_pr100_ili_lag_1.
To make the data processing easier later we convert the dataset from wide to long form and collapse the estimated mortality
est_attrib_county_long<-data.table::melt.data.table(est_attrib_sim_county,
id.vars = c("location_code",
"season",
"x",
"week",
"id",
"sim_id",
"deaths",
"sim_value_exposures=observed"),
measure.vars = c("sim_value_temperature_high=0",
"sim_value_pr100_ili_lag_1=0"))
data.table::setnames(est_attrib_county_long, "variable", "attr")
head(est_attrib_county_long, 5)
#> location_code season x week id sim_id deaths
#> <char> <char> <num> <num> <int> <num> <int>
#> 1: county03 2009/2010 24 1 1 1 103
#> 2: county03 2010/2011 24 1 2 1 96
#> 3: county03 2011/2012 24 1 3 1 105
#> 4: county03 2012/2013 24 1 4 1 97
#> 5: county03 2013/2014 24 1 5 1 114
#> sim_value_exposures=observed attr value
#> <num> <fctr> <num>
#> 1: 114.2108 sim_value_temperature_high=0 114.2108
#> 2: 114.2906 sim_value_temperature_high=0 114.2906
#> 3: 117.8818 sim_value_temperature_high=0 117.8818
#> 4: 117.3912 sim_value_temperature_high=0 117.3912
#> 5: 117.1597 sim_value_temperature_high=0 117.1597
We can see that the columns sim_value_temperature_high=0, sim_value_pr100_ili_lag_1=0 are now collapsed into the new column attr and value with attr describing which exposure we have and value giving the corresponding reference value.
est_attrib_nation_long<-data.table::melt.data.table(est_attrib_sim_nation,
id.vars = c("location_code",
"season",
"x",
"week",
"id",
"sim_id",
"deaths",
"sim_value_exposures=observed"),
measure.vars = c("sim_value_temperature_high=0",
"sim_value_pr100_ili_lag_1=0"))
data.table::setnames(est_attrib_nation_long, "variable", "attr")
We will now aggregate our two simulated datasets (one on a county level and one on a national level) to aid in comparison.
We proceed by aggregating the county dataset to the national/seasonal
level. Afterwards we calculate the expected attributable mortality,
exp_attr
, by subtracting value
(the simulated
expected number of deaths given the reference value of the exposure)
from the sim_value_exposures=observed.
To be able to separate this dataset from the other we add a tag.
aggregated_county_to_nation <- est_attrib_county_long[,.(
"sim_value_exposures=observed" = sum(`sim_value_exposures=observed`),
value = sum(value),
deaths = sum(deaths)
), keyby = .(season, attr, sim_id)]
# Add exp_attr, exp_irr and a tag.
aggregated_county_to_nation[, exp_attr:= (`sim_value_exposures=observed` - value)]
aggregated_county_to_nation[, tag := "aggregated_from_county"]
head(aggregated_county_to_nation, 5)
#> Key: <season, attr, sim_id>
#> season attr sim_id sim_value_exposures=observed
#> <char> <fctr> <num> <num>
#> 1: 2009/2010 sim_value_temperature_high=0 1 43858.31
#> 2: 2009/2010 sim_value_temperature_high=0 2 44092.49
#> 3: 2009/2010 sim_value_temperature_high=0 3 44282.11
#> 4: 2009/2010 sim_value_temperature_high=0 4 44420.66
#> 5: 2009/2010 sim_value_temperature_high=0 5 44445.76
#> value deaths exp_attr tag
#> <num> <int> <num> <char>
#> 1: 43453.09 44421 405.2236 aggregated_from_county
#> 2: 43664.49 44421 427.9983 aggregated_from_county
#> 3: 43862.21 44421 419.8997 aggregated_from_county
#> 4: 43989.30 44421 431.3637 aggregated_from_county
#> 5: 44061.13 44421 384.6273 aggregated_from_county
For the national model we aggregate over seasons and create exp_attr in the same way as above.
aggregated_nation <- est_attrib_nation_long[, .(
"sim_value_exposures=observed" = sum(`sim_value_exposures=observed`),
value = sum(value),
deaths = sum(deaths)
), keyby = .(season, attr, sim_id)]
aggregated_nation[, exp_attr:= (`sim_value_exposures=observed` - value)]
aggregated_nation[, tag:= "nation"]
head(aggregated_nation, 5)
#> Key: <season, attr, sim_id>
#> season attr sim_id sim_value_exposures=observed
#> <char> <fctr> <num> <num>
#> 1: 2009/2010 sim_value_temperature_high=0 1 43928.91
#> 2: 2009/2010 sim_value_temperature_high=0 2 44400.21
#> 3: 2009/2010 sim_value_temperature_high=0 3 44427.94
#> 4: 2009/2010 sim_value_temperature_high=0 4 44073.65
#> 5: 2009/2010 sim_value_temperature_high=0 5 44130.06
#> value deaths exp_attr tag
#> <num> <int> <num> <char>
#> 1: 43928.91 44421 0 nation
#> 2: 44400.21 44421 0 nation
#> 3: 44427.94 44421 0 nation
#> 4: 44073.65 44421 0 nation
#> 5: 44130.06 44421 0 nation
For simplicity we data.table::rbindlist
the two datasets
together.
The next thing to do is to aggregate away the simulations. The benefits of having the simulations is the possibility it gives to efficiently compute all desired quantiles. For this example we will use the .05, .5 and .95 quantiles.
# Quantile functins
q05 <- function(x){
return(quantile(x, 0.05))
}
q95 <- function(x){
return(quantile(x, 0.95))
}
We compute the quantiles for exp_attr in the following way.
col_names <- colnames(data_national)
data.table::setkeyv(data_national,
col_names[!col_names %in% c("exp_attr",
"sim_id",
"sim_value_exposures=observed",
"value",
"deaths")])
aggregated_sim_seasonal_data_national<- data_national[,
unlist(recursive = FALSE,
lapply(.(median = median, q05 = q05, q95 = q95),
function(f) lapply(.SD, f)
)),
by = eval(data.table::key(data_national)),
.SDcols = c("exp_attr")]
head(aggregated_sim_seasonal_data_national,5)
#> Key: <season, attr, tag>
#> season attr tag
#> <char> <fctr> <char>
#> 1: 2009/2010 sim_value_temperature_high=0 aggregated_from_county
#> 2: 2009/2010 sim_value_temperature_high=0 nation
#> 3: 2009/2010 sim_value_pr100_ili_lag_1=0 aggregated_from_county
#> 4: 2009/2010 sim_value_pr100_ili_lag_1=0 nation
#> 5: 2010/2011 sim_value_temperature_high=0 aggregated_from_county
#> median.exp_attr q05.exp_attr q95.exp_attr
#> <num> <num> <num>
#> 1: 406.2245 384.4178 428.9161
#> 2: 0.0000 0.0000 0.0000
#> 3: 688.4236 572.7230 810.9124
#> 4: 1183.1996 1010.9683 1356.3397
#> 5: 431.6623 404.6100 454.2854
We can now see that we have credible intervals and estimates for attributable deaths for all exposures.
To be able to compare the two models we make a point range plot using ggplot2.
q <- ggplot(aggregated_sim_seasonal_data_national[attr == "sim_value_pr100_ili_lag_1=0"],
aes(x = season, y = median.exp_attr, group = tag, color = tag))
q <- q + geom_pointrange(aes(x = season, y = median.exp_attr, ymin = q05.exp_attr, ymax = q95.exp_attr), position = position_dodge(width = 0.3))
q <- q + ggtitle("Attributable mortality due to ILI in Norway according to 2 models")
q <- q + scale_y_continuous("Estimated attributable mortality")
q <- q + theme(axis.text.x = element_text(angle = 90),axis.title.x=element_blank())
q <- q + labs(caption = glue::glue("Aggregated county model: Attributable mortality modeled on a county level before beeing aggregated up to a national level.\n National model: Attributable mortality modeled on a national level."))
q
When operating on the national level, we prefer to aggregate the county model to national level (instead of using the national model). This ensures consistent results at all geographical levels.
aggregated_county_to_nation <- est_attrib_county_long[, .(
"sim_value_exposures=observed" = sum(`sim_value_exposures=observed`),
value = sum(value),
deaths = sum(deaths)
), keyby = .(season, x, week, attr, sim_id)]
aggregated_county_to_nation[, exp_attr:= (`sim_value_exposures=observed` - value)]
aggregated_county_to_nation[, exp_irr:= (`sim_value_exposures=observed` /value)]
head(aggregated_county_to_nation,5)
#> Key: <season, x, week, attr, sim_id>
#> season x week attr sim_id
#> <char> <num> <num> <fctr> <num>
#> 1: 2009/2010 1 30 sim_value_temperature_high=0 1
#> 2: 2009/2010 1 30 sim_value_temperature_high=0 2
#> 3: 2009/2010 1 30 sim_value_temperature_high=0 3
#> 4: 2009/2010 1 30 sim_value_temperature_high=0 4
#> 5: 2009/2010 1 30 sim_value_temperature_high=0 5
#> sim_value_exposures=observed value deaths exp_attr exp_irr
#> <num> <num> <int> <num> <num>
#> 1: 779.0600 742.4210 816 36.63896 1.049351
#> 2: 784.2061 745.5027 816 38.70340 1.051916
#> 3: 787.2436 749.2873 816 37.95627 1.050657
#> 4: 792.8158 753.7923 816 39.02350 1.051770
#> 5: 794.3861 759.5668 816 34.81924 1.045841
Again we compute the quantiles.
col_names <- colnames(aggregated_county_to_nation)
data.table::setkeyv(aggregated_county_to_nation, col_names[!col_names %in% c("exp_attr", "exp_irr","sim_id", "exposures", "sim_value_exposures=observed", "value")])
aggregated_county_to_nation_weekly <- aggregated_county_to_nation[,
unlist(recursive = FALSE, lapply(.(median = median, q05 = q05, q95 = q95),
function(f) lapply(.SD, f)
)),
by=eval(data.table::key(aggregated_county_to_nation)),
.SDcols = c("exp_attr", "exp_irr")]
We then estimate the cumulative sums of attributable mortality and corresponding credible intervals.
aggregated_county_to_nation_weekly[, cumsum := cumsum(median.exp_attr), by = .( attr, season)]
aggregated_county_to_nation_weekly[, cumsum_q05 := cumsum(q05.exp_attr), by = .( attr, season)]
aggregated_county_to_nation_weekly[, cumsum_q95 := cumsum(q95.exp_attr), by = .( attr, season)]
head(aggregated_county_to_nation_weekly, 5)
#> Key: <season, x, week, attr, deaths>
#> season x week attr deaths median.exp_attr
#> <char> <num> <num> <fctr> <int> <num>
#> 1: 2009/2010 1 30 sim_value_temperature_high=0 816 36.760202067
#> 2: 2009/2010 1 30 sim_value_pr100_ili_lag_1=0 816 0.000000000
#> 3: 2009/2010 2 31 sim_value_temperature_high=0 854 78.624885724
#> 4: 2009/2010 2 31 sim_value_pr100_ili_lag_1=0 854 0.002206921
#> 5: 2009/2010 3 32 sim_value_temperature_high=0 777 44.157407886
#> median.exp_irr q05.exp_attr q05.exp_irr q95.exp_attr q95.exp_irr
#> <num> <num> <num> <num> <num>
#> 1: 1.049127 34.798470669 1.045839 38.809512025 1.051903
#> 2: 1.000000 0.000000000 1.000000 0.000000000 1.000000
#> 3: 1.104903 74.373542623 1.097824 83.017392031 1.110886
#> 4: 1.000003 0.001822797 1.000002 0.002603291 1.000003
#> 5: 1.058749 41.779707163 1.054815 46.580456354 1.062070
#> cumsum cumsum_q05 cumsum_q95
#> <num> <num> <num>
#> 1: 3.676020e+01 3.479847e+01 3.880951e+01
#> 2: 0.000000e+00 0.000000e+00 0.000000e+00
#> 3: 1.153851e+02 1.091720e+02 1.218269e+02
#> 4: 2.206921e-03 1.822797e-03 2.603291e-03
#> 5: 1.595425e+02 1.509517e+02 1.684074e+02
We can then plot the estimated cumulative attributable mortality over influenza seasons in Norway
library(ggplot2)
q <- ggplot(
data = aggregated_county_to_nation_weekly[
season %in% c(
"2015/2016",
"2016/2017",
"2017/2018",
"2018/2019",
"2019/2020"
) &
attr == "sim_value_pr100_ili_lag_1=0"
],
aes(
x = x,
y = cumsum,
group = season,
color = season,
fill = season
)
)
q <- q + geom_line()
q <- q + geom_ribbon(
data = aggregated_county_to_nation_weekly[
season %in% c("2019/2020") &
attr == "sim_value_pr100_ili_lag_1=0"
],
aes(
ymin = cumsum_q05,
ymax = cumsum_q95
),
alpha = 0.4,
colour = NA
)
q <- q + scale_y_continuous("Estimated cumulative attributable mortality")
q <- q + ggtitle("Estimated cumulative attributable mortality over influenza seasons in Norway")
q
We can also plot the estimated weekly attributable mortality in Norway
q <- ggplot(
data = aggregated_county_to_nation_weekly[attr == "sim_value_pr100_ili_lag_1=0"],
aes(x = x, y = cumsum, group = season)
)
q <- q + geom_line(
data = aggregated_county_to_nation_weekly[
season != "2019/2020" &
attr == "sim_value_pr100_ili_lag_1=0"
],
aes(
x = x,
y = median.exp_attr,
group = season
),
color = "grey"
)
q <- q + geom_line(
data = aggregated_county_to_nation_weekly[
season == "2019/2020" &
attr == "sim_value_pr100_ili_lag_1=0"
],
aes(
x = x,
y = median.exp_attr,
group = season
),
color = "blue"
)
q <- q + geom_ribbon(
data = aggregated_county_to_nation_weekly[
season == "2019/2020" &
attr == "sim_value_pr100_ili_lag_1=0"
],
aes(
x = x,
ymin = q05.exp_attr,
ymax = q95.exp_attr
),
fill = "blue",
alpha=0.4
)
q <- q + scale_y_continuous("Estimated attributable mortality")
q <- q + ggtitle("Estimated mortality due to ILI per week")
q
Until now we have focused on estimating attributable mortality. Now
we will investigate computing the incident rate ratio (IRR) for
pr100_ili_lag_1. To do this we will use the fit made by
fit_attrib
on the county dataset but we will change the
values for pr100_ili_lag_1 to 1 (IRRs are generally expressed
as the effect of the exposure changing from 0 to 1).
data_fake_county_irr <- data.table::copy(data_fake_county)
data_fake_county_irr[, pr100_ili_lag_1 := 1]
head(data_fake_county_irr, 5)
#> Key: <location_code, week>
#> location_code week season year yrwk x pop pr100_ili
#> <char> <num> <char> <num> <char> <num> <num> <num>
#> 1: county03 1 2009/2010 2010 2010-01 24 693494 0.5302766
#> 2: county03 1 2010/2011 2011 2011-01 24 693494 0.7234059
#> 3: county03 1 2011/2012 2012 2012-01 24 693494 1.7817489
#> 4: county03 1 2012/2013 2013 2013-01 24 693494 1.6000083
#> 5: county03 1 2013/2014 2014 2014-01 24 693494 1.6037883
#> pr100_ili_lag_1 temperature temperature_high deaths
#> <num> <num> <num> <int>
#> 1: 1 -0.94325234 0 103
#> 2: 1 0.01462311 0 96
#> 3: 1 -2.03893188 0 105
#> 4: 1 -6.02035548 0 97
#> 5: 1 -1.72146124 0 114
Then we can set the reference value to zero and hence obtain the IRR for the given exposure.
Now we use est_attrib
to create the simulations.
est_attrib_sim_county_irr <- attrib::est_attrib(
fit_county,
data_fake_county_irr,
exposures = exposures_irr,
n_sim = 100
)
head(est_attrib_sim_county_irr, 5)
#> location_code week season year yrwk x pop pr100_ili
#> <char> <num> <char> <num> <char> <num> <num> <num>
#> 1: county03 1 2009/2010 2010 2010-01 24 693494 0.5302766
#> 2: county03 1 2010/2011 2011 2011-01 24 693494 0.7234059
#> 3: county03 1 2011/2012 2012 2012-01 24 693494 1.7817489
#> 4: county03 1 2012/2013 2013 2013-01 24 693494 1.6000083
#> 5: county03 1 2013/2014 2014 2014-01 24 693494 1.6037883
#> pr100_ili_lag_1 temperature temperature_high deaths id sim_id
#> <num> <num> <num> <int> <int> <num>
#> 1: 1 -0.94325234 0 103 1 1
#> 2: 1 0.01462311 0 96 2 1
#> 3: 1 -2.03893188 0 105 3 1
#> 4: 1 -6.02035548 0 97 4 1
#> 5: 1 -1.72146124 0 114 5 1
#> sim_value_exposures=observed sim_value_pr100_ili_lag_1=0
#> <num> <num>
#> 1: 116.8013 113.5957
#> 2: 115.8566 113.1569
#> 3: 115.9629 113.3716
#> 4: 116.5766 113.7831
#> 5: 115.9900 113.6162
We see we have obtained values for the reference of the exposure in
the same way as before. The difference is that we changed the dataset
before running est_attrib. This means we will now be observing
the difference between pr100_ili_lag_1=0
and
pr100_ili_lag_1=1
.
We now aggregate to the national seasonal level.
aggregated_county_to_nation_sim_irr <- est_attrib_sim_county_irr[, .(
"sim_value_exposures=observed" = sum(`sim_value_exposures=observed`),
"sim_value_pr100_ili_lag_1=0"= sum(`sim_value_pr100_ili_lag_1=0`),
deaths = sum(deaths)
), keyby = .(season, sim_id)]
Here we generate the IRR:
aggregated_county_to_nation_sim_irr[, exp_irr:= (`sim_value_exposures=observed`/`sim_value_pr100_ili_lag_1=0`
)]
head(aggregated_county_to_nation_sim_irr,5)
#> Key: <season, sim_id>
#> season sim_id sim_value_exposures=observed sim_value_pr100_ili_lag_1=0
#> <char> <num> <num> <num>
#> 1: 2009/2010 1 44824.92 43594.70
#> 2: 2009/2010 2 44999.62 43410.83
#> 3: 2009/2010 3 44911.74 43283.49
#> 4: 2009/2010 4 44611.30 43371.94
#> 5: 2009/2010 5 44837.44 43653.91
#> deaths exp_irr
#> <int> <num>
#> 1: 44421 1.028219
#> 2: 44421 1.036599
#> 3: 44421 1.037618
#> 4: 44421 1.028575
#> 5: 44421 1.027112
Now we can compute the quantiles:
col_names <- colnames(aggregated_county_to_nation_sim_irr)
data.table::setkeyv(
aggregated_county_to_nation_sim_irr,
col_names[!col_names %in% c("exp_irr", "sim_id", "sim_value_exposures=observed", "sim_value_pr100_ili_lag_1=0")]
)
aggregated_county_to_nation_irr <- aggregated_county_to_nation_sim_irr[,
unlist(recursive = FALSE, lapply(.(median = median, q05 = q05, q95 = q95), function(f) lapply(.SD, f))),
by = eval(data.table::key(aggregated_county_to_nation_sim_irr)),
.SDcols = c("exp_irr")
]
aggregated_county_to_nation_irr[, tag := "aggregated"]
aggregated_county_to_nation_irr
#> Key: <season, deaths>
#> season deaths median.exp_irr q05.exp_irr q95.exp_irr tag
#> <char> <int> <num> <num> <num> <char>
#> 1: 2009/2010 44421 1.031681 1.026371 1.039722 aggregated
#> 2: 2010/2011 43062 1.027203 1.021396 1.035012 aggregated
#> 3: 2011/2012 43431 1.026417 1.020577 1.034055 aggregated
#> 4: 2012/2013 43228 1.028238 1.022689 1.036722 aggregated
#> 5: 2013/2014 43328 1.024444 1.019271 1.033041 aggregated
#> 6: 2014/2015 42951 1.027011 1.022164 1.035480 aggregated
#> 7: 2015/2016 43736 1.021526 1.016067 1.030191 aggregated
#> 8: 2016/2017 43821 1.032076 1.027001 1.040593 aggregated
#> 9: 2017/2018 43716 1.030563 1.025435 1.038934 aggregated
#> 10: 2018/2019 43326 1.026096 1.021014 1.034313 aggregated
#> 11: 2019/2020 43572 1.029604 1.024646 1.038280 aggregated
Now we compare the resulting values for IRR with the ones obtained by
coef(fit_county)$season
and the 90 percent credible
interval computed manually using the standard deviation given by
summary(fit_county) for pr100_ili_lag_1.
coef_fit_county <- data.table::as.data.table(coef(fit_county)$season)
col_names_coef <- c("pr100_ili_lag_1")
coef_irr_data <- coef_fit_county[, ..col_names_coef]
coef_irr_data[, irr := exp(pr100_ili_lag_1)]
coef_irr_data[, q05 := exp(pr100_ili_lag_1 - 1.645 *0.003761)] # 0.003761 is the standard deviation from coef(fit_county)
coef_irr_data[, q95 := exp(pr100_ili_lag_1 + 1.645 *0.003761)]
coef_irr_data[, tag := "from_coef"]
coef_irr_data
#> pr100_ili_lag_1 irr q05 q95 tag
#> <num> <num> <num> <num> <char>
#> 1: 0.03191705 1.032432 1.026064 1.038839 from_coef
#> 2: 0.02728584 1.027662 1.021323 1.034039 from_coef
#> 3: 0.02649384 1.026848 1.020515 1.033221 from_coef
#> 4: 0.02850521 1.028915 1.022569 1.035301 from_coef
#> 5: 0.02478464 1.025094 1.018772 1.031456 from_coef
#> 6: 0.02723381 1.027608 1.021270 1.033985 from_coef
#> 7: 0.02211935 1.022366 1.016060 1.028711 from_coef
#> 8: 0.03244745 1.032980 1.026608 1.039390 from_coef
#> 9: 0.03068955 1.031165 1.024805 1.037565 from_coef
#> 10: 0.02624050 1.026588 1.020256 1.032959 from_coef
#> 11: 0.02986655 1.030317 1.023962 1.036711 from_coef
Add the correct seasons to the data.
coef_irr_data <- cbind(season = aggregated_county_to_nation_irr$season, coef_irr_data)
coef_irr_data
#> season pr100_ili_lag_1 irr q05 q95 tag
#> <char> <num> <num> <num> <num> <char>
#> 1: 2009/2010 0.03191705 1.032432 1.026064 1.038839 from_coef
#> 2: 2010/2011 0.02728584 1.027662 1.021323 1.034039 from_coef
#> 3: 2011/2012 0.02649384 1.026848 1.020515 1.033221 from_coef
#> 4: 2012/2013 0.02850521 1.028915 1.022569 1.035301 from_coef
#> 5: 2013/2014 0.02478464 1.025094 1.018772 1.031456 from_coef
#> 6: 2014/2015 0.02723381 1.027608 1.021270 1.033985 from_coef
#> 7: 2015/2016 0.02211935 1.022366 1.016060 1.028711 from_coef
#> 8: 2016/2017 0.03244745 1.032980 1.026608 1.039390 from_coef
#> 9: 2017/2018 0.03068955 1.031165 1.024805 1.037565 from_coef
#> 10: 2018/2019 0.02624050 1.026588 1.020256 1.032959 from_coef
#> 11: 2019/2020 0.02986655 1.030317 1.023962 1.036711 from_coef
rbindlist the two datasets together.
total_data_irr <- data.table::rbindlist(list(coef_irr_data, aggregated_county_to_nation_irr), use.names = FALSE)
total_data_irr[, pr100_ili_lag_1 := NULL]
total_data_irr
#> season irr q05 q95 tag
#> <char> <num> <num> <num> <char>
#> 1: 2009/2010 1.032432 1.026064 1.038839 from_coef
#> 2: 2010/2011 1.027662 1.021323 1.034039 from_coef
#> 3: 2011/2012 1.026848 1.020515 1.033221 from_coef
#> 4: 2012/2013 1.028915 1.022569 1.035301 from_coef
#> 5: 2013/2014 1.025094 1.018772 1.031456 from_coef
#> 6: 2014/2015 1.027608 1.021270 1.033985 from_coef
#> 7: 2015/2016 1.022366 1.016060 1.028711 from_coef
#> 8: 2016/2017 1.032980 1.026608 1.039390 from_coef
#> 9: 2017/2018 1.031165 1.024805 1.037565 from_coef
#> 10: 2018/2019 1.026588 1.020256 1.032959 from_coef
#> 11: 2019/2020 1.030317 1.023962 1.036711 from_coef
#> 12: 2009/2010 1.031681 1.026371 1.039722 aggregated
#> 13: 2010/2011 1.027203 1.021396 1.035012 aggregated
#> 14: 2011/2012 1.026417 1.020577 1.034055 aggregated
#> 15: 2012/2013 1.028238 1.022689 1.036722 aggregated
#> 16: 2013/2014 1.024444 1.019271 1.033041 aggregated
#> 17: 2014/2015 1.027011 1.022164 1.035480 aggregated
#> 18: 2015/2016 1.021526 1.016067 1.030191 aggregated
#> 19: 2016/2017 1.032076 1.027001 1.040593 aggregated
#> 20: 2017/2018 1.030563 1.025435 1.038934 aggregated
#> 21: 2018/2019 1.026096 1.021014 1.034313 aggregated
#> 22: 2019/2020 1.029604 1.024646 1.038280 aggregated
#> season irr q05 q95 tag
q <- ggplot(
data = total_data_irr,
aes(
x = season,
group = tag,
color = tag
)
)
q <- q + geom_pointrange(
aes(
y = irr,
ymin = q05,
ymax = q95
),
position = position_dodge(width = 0.3)
)
q <- q + theme(axis.text.x = element_text(angle = 90),axis.title.x=element_blank())
q <- q + labs(y = "Incident risk ratio")
q <- q + ggtitle("Incident risk ratio for ILI per season")
q
As we can see these intervals are very similar.
The benefit of the simulated approach is that this process will be equally easy no matter the complexity of what we want to compute the IRR for. We do not have to take into account the variance-covariance matrix at any stage.